Convergence of Newton's Method for Singular Smooth and Nonsmooth Equations Using Adaptive Outer Inverses

نویسندگان

  • Xiaojun Chen
  • Zuhair Nashed
  • Liqun Qi
چکیده

We present a local convergence analysis of generalized Newton methods for singular smooth and nonsmooth operator equations using adaptive constructs of outer inverses. We prove that for a solution x of F(x) = 0, there exists a ball S = S(x ; r), r > 0 such that for any starting point x 0 2 S the method converges to a solution x 2 S of ?F (x) = 0, where ? is a bounded linear operator that depends on the Fr echet derivative of F at x 0 or on a generalized Jacobian of F at x 0. Point x may be diierent from x when x is not an isolated solution. Moreover, we prove that the convergence is quadratic if the operator is smooth, and superlinear if the operator is locally Lipschitz. These results are sharp in the sense that they reduce in the case of an invertible derivative or generalized derivative to earlier theorems with no additional assumptions. The results are illustrated by a system of smooth equations and a system of nonsmooth equations, each of which is equivalent to a nonlinear complementarity problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation

An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...

متن کامل

A parameterized Newton method and a quasi-Newton method for nonsmooth equations

This paper presents a parameterized Newton method using generalized Jacobians and a Broyden-like method for solving nonsmooth equations. The former ensures that the method is well-deened even when the generalized Jacobian is singular. The latter is constructed by using an approximation function which can be formed for nonsmooth equations arising from partial diierential equations and nonlinear ...

متن کامل

Global Convergence of Damped Newton's Method for Nonsmooth Equations via the Path Search

A natural damping of Newton's method for nonsmooth equations is presented. This damping, via the path search instead of the traditional line search, enlarges the domain of convergence of Newton's method and therefore is said to be globally convergent. Convergence behavior is like that of line search damped Newton's method for smooth equations, including Q-quadratic convergence rates under appro...

متن کامل

On Properties of Newton's Method for Smooth and Nonsmooth Equations1

Variational inequalities, nonlinear programming, complementarity problems and other problems can be reduced to nonsmooth equations, for which some generalizations of Newton's method are known. The Newton path, as a natural generalization of the Newton direction, was suggested by D. Ralph for enlarging the convergence region (globalization) of Newton-Robinson's method in the nonsmooth case. We i...

متن کامل

Global and Local Superlinear Convergence Analysis of Newton - TypeMethods for Semismooth Equations with Smooth Least

The local superlinear convergence of the generalized Newton method for solving systems of nonsmooth equations has been proved by Qi and Sun under the semismooth condition and nonsingularity of the generalized Jacobian at the solution. Unlike the Newton method for systems of smooth equations, globalization of the generalized Newton method seems dif-cult to achieve in general. However, we show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1997